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Highlights: 

 

• Prediction models for capillary absorption and compressive strength in pozzolan-added concrete were evaluated. 

• Artificial neural networks outperformed multiple regression models in predictive accuracy. 

• The addition of 15% pozzolan significantly improved the mechanical properties of concrete. 

 

Abstract: Cement is the fundamental binder of concrete, and its manufacture has a significant impact on the environment; 

therefore, it is necessary to look for eco-sustainable alternatives, including additions such as natural pozzolana, which 

affect the internal matrix of concrete and therefore the compressive strength and capillary absorption of concrete. In this 

context, prediction models for capillary absorption and compressive strength of concrete with pozzolana additions have 

been determined by applying linear multiple regression tools and artificial neural networks which will help reduce labora-

tory testing costs and times. For this purpose, 16 types of mixtures were designed with w/c ratios of 0.40, 0.45, 0.50 and 

0. 55 and addition of 10, 15 and 20% of pozzolana; 160 cylindrical samples were manufactured and tested in laboratory, 

the values of capillary absorption and compressive strength at 28 and 56 days of curing were determined; the effect of each 

variable on the results obtained indicated that 15% pozzolana significantly improved the properties studied; using the data 

of the manufacturing variables of each design and the results of capillary absorption and compressive strength, prediction 

models were obtained for both properties; the best back propagation neural networks (BPNN) structure is [10,20,10,1], 

with R2
compression=0. 9486 and R2

capillary absorption=0.9756; while the models obtained with multiple linear regression obtained 

R2
compression = 0.9391 and R2

capillary absorption = 0.8693; both techniques showed a high reliability for the prediction of com-

pressive strength and capillary absorption.  
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1. Introduction 

 

The development of prediction models in the field of civil engineering materials, especially for concrete, is especially 

important in the use of materials due to their reliability and accuracy. Mathematical prediction of concrete quality and varia-

bles can be complemented with techniques such as regression analysis and artificial neural networks (Tam et al., 2022). 

Currently, there is an environmental concern regarding the scarcity of natural resources, and an emerging trend to mitigate 

this impact. Several studies have used construction and demolition wastes (Dantas, 2013).  Lothenbach, Scrivener and Hooton, 

(2011) reused industrial manufacturing by-products as cementitious materials, among them natural pozzolanas. Similarly, 

Tam et al. (2022), used a substitute of CO2 in the aggregate of the mix design to decrease the extraction of natural materials 

and thus preserve the environment which allow us to reduce CO2 emissions. 

 

Likewise, several investigations have been developed with the objective of studying the influence of supplementary ce-

mentitious materials (SCM), mainly natural pozzolana, on the mechanical, rheological, and durability properties of fresh and 

hardened concrete (Hammat et al, 2021; López and Castro, 2010). The presence of SCM influences the amount and type of 

hydrated calcium silicates (HCS) formed in cementitious systems and thus the volume, porosity, and ultimately the durability 

of such systems (Lothenbach et al., 2011; Taşdemir, 2003). Several studies demonstrate the increase of compressive strength 

by the addition of natural pozzolanas and various SCMs (Deboucha et al., 2015; Hammat et al., 2021). Capillary absorption 

can not only reflect the microstructure of concrete surface, but also reflect the durability, concrete performance, and compres-

sive strength in pozzolanic materials (Taşdemir, 2003; Zhuang, 2022).  However, the compressive strength and capillary 

absorption are highly dependent on the degree of fineness and pozzolanic activity of SCM admixtures (Hammat et al., 2021; 

Taşdemir, 2003). 

 

The diverse behavior of pozzolana requires extensive testing to learn more about its behavior pattern. However, extensive 

testing requires quantities of materials, time, and cost. In addition, human errors and various laboratory conditions introduce 

another element of uncertainty in laboratory results (al-Swaidani et al., 2022). Therefore, to improve studies and reduce the 

cost and time required for testing, models based on experimental data that predict compressive strength and capillary absorp-

tion with an acceptable range of error can be recommended (Deshpande, 2014). Techniques such as linear and nonlinear 

regression analysis and, more recently, various artificial neural networks are available to evaluate the effects of various man-

ufacturing variables on concrete performance. Multiple linear regression (MLR) is the simplest method that has been used to 

predict concrete properties (al-Swaidani et al., 2022). 

 

Several studies and multiple linear regression (MLR) models with the addition of pozzolanic materials to concrete have 

shown excellent results in predicting compressive strength values obtained in the laboratory (Waghmare et al., 2021). Ac-

cording to Deshpande et al. (2014), the application of nonlinear regression models and tree model to analyze the behavior of 

concrete is feasible, however, Dantas et al. (2013) recommends that the choice of a suitable regression equation involves 

List of abbreviation: 

ANN - artificial neural networks 

MLR - multiple linear regression 

NP - natural pozzolana 

BPNN back - propagation neural networks 

w/c - water-to-cement ratio 
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technique and experience. As MLR does not produce reliable predictions (due to its low flexibility), different machine learning 

methods have been widely used to estimate concrete properties more accurately (al-Swaidani et al., 2022). The compressive 

and tensile strengths of concrete are the properties that are mainly predicted by artificial neural network (ANN). Some studies 

have been published showing that ANNs can model complex and nonlinear relationships between parameters affecting the 

compressive strength of concrete with zeolite addition (Waghmare et al., 2021).  

 

In recent years, various studies have demonstrated the high effectiveness and reliability of artificial neural networks (ANN) 

to predict various properties of hardened concrete using multiple variables. Such is the case of Divyah Nagarajan et al. (2020), 

who developed artificial neural networks (ANN) with which they were able to accurately predict flexural, tensile, and com-

pressive strengths based on only five manufacturing variables, where they obtained high correlation coefficients, greater than 

0.90, for those properties. Meanwhile, İbrahim Özgür Deneme (2020) used gene expression programming (GEP) and neural 

networks based on seven variables to predict the compressive strength of fly ash self-compacting concrete and found that 

neural network (ANN) models outperformed to genetic models (GEP) in prediction accuracy. Moreover, there are even rec-

ords of investigations where natural pozzolana (NP) additions were employed as a replacement for cement at the nanoscale, 

they came to employ the techniques of MLR and ANN. The importance of the nano pozzolana study is evidenced by its 

correlation and performance analysis results could be effectively predicted using ANN and MLRN techniques, with ANN 

being the most accurate (al-Swaidani et al., 2022). 

 

 Therefore, there is evidence that ANN methods are very accurate in predicting factors that are the basis of concrete prop-

erties, i.e., it can be expected that it will have the same result when analyzing the mechanical, physical and chemical properties 

of concrete. From the literature review, the importance of applying techniques such as MLR and ANN for the prediction of 

the compressive strength and capillary absorption of concrete with natural pozzolana (NP) was noted, since there is scarce 

information, and the techniques mentioned have a good approximation to the values obtained in laboratory conditions. The 

novelty lies in the development of accurate predictive models to determine the compressive strength and capillary absorption 

of concrete with natural pozzolana additions that will allow to save manufacturing costs and waiting time in the tests, therefore, 

the objective of this work is to determine predictive models using multiple linear regression analysis (MLR) and neural net-

works (ANN) for the compressive strength and capillary absorption of concrete with pozzolana. 

 

2. Materials and methods  

 

The experimental program of this study was designed to investigate the compressive strength and capillary absorption of 

concrete mixtures containing various percentages of pozzolana for mix ratios. 

 

2.1. Materials 

 

In the present investigation, 16 concrete batches were designed, using the same materials: Portland cement type I, natural 

pozzolana, super plasticizing admixture, aggregates from the Jicamarca quarry and potable water. 

 

2.1.1. Cement 

 

The cement used was Portland type I, brand SOL. Table 1 shows its mineralogical phases based on the requirements of 

ASTM C150. 

Table 1. Mineralogical phases of Portland cement according to ASTM C150 standard. 

Mineral phase Proportion by weight (%) 

C2S 13.15 

C3S 53.60 

C3A 9.66 

C4AF 9.34 
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2.1.2. Aggregates 

 

The aggregates used in this research come from the Jicamarca quarry and meet the requirements of the ASTM C33 stand-

ard. The characteristics are presented in Table 2. 

 

Table 2. Physical properties of aggregates according to ASTM standards.  

Property Test standard Units Fine aggregate  Coarse aggregate 

Loose unit weight ASTM C127-128 kg/m3 1692 1456 

Compacted unit weight ASTM C127-128 kg/m3 1815 1663 

Specific mass weight ASTM C127-128 g/cm3 2.68 2.69 

Surface dry mass specific gravity ASTM C127-128 g/cm3 2.70 2.72 

Apparent specific weight ASTM C127-128 g/cm3 2.74 2.77 

Absorption percentage ASTM C127-128 % 0.83 1.18 

Modulus of fineness ASTM D422  2.82 6.74 

 
2.1.3. Chemical composition of UNACEM's natural pozzolana 
 

The chemical analysis shows that the sum of the percentages of silicon dioxide (SiO2), aluminum oxide (Al2O3) and ferric 

oxide (Fe2O3) is 81.12%, which is higher than the minimum requirement established in ASTM C618 (2005): 70%. 

 
Table 3. Chemical composition of UNACEM natural pozzolana. 

Chemical analysis Values (%) 

Silicon dioxide (SiO2) 51.15 

Aluminum oxide (Al2O3) 8.03 

Iron oxide (Fe2O3) 21.94 

Calcium oxide (CaO) 1.18 

Magnesium oxide (MgO) 0.32 

Sulfur trioxide (SO3) 5.43 

Potassium oxide (K2O) 1.09 

Sodium oxide (Na2O) 1.15 

 

2.1.3.1. Pozzolana strength activity index (ASTM C311) 
 

The compressive strength was compared between mortars with 20% pozzolana and mortars without addition. The dosage 

and strength activity indexes are presented in Table 4. 

 
Table 4. Dosage and pozzolanic activity index according to ASTM C311 standard. 

Materials Control mortar Mortar with 20% pozzolana Resistant activity index 

Portland cement type I (g) 500 400 ------ 

Pozzolana 0 100 ------------ 

Sand 1375 1375 ------- 

# of samples prepared 6 buckets of mortar 6 buckets of mortar --------- 

Average strength at 7 days (kg/cm2) 206 158 77 

Average resistance at 28 days (kg/cm2) 317 281 89 

 
According to ASTM C618, the resistant activity index must be greater than 75% for its use as a supplementary material; 

in the case study, a value of 89 was obtained. 

 

2.1.4. Additive  

 

The super plasticizing admixture used was Sika viscocrete-20HE, chemically based on an aqueous solution of modified 

polycarboxylates. It has a density equal to 1.08 kg/l, light brown color and complies with the requirements of ASTM C 494 
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type F. 

 

2.2. Mix design 

 

For the mix designs, w/c ratios = 0.40, 0.45, 0.50 and 0.55 were used; the percentages in weights of pozzolana addition 

were 10%, 15% and 20%; the curing ages of the samples were 28 and 56 days; the sand/stone weight ratio was 60/40. Table 

5 shows the 16 dosages used, varying the pozzolana content. The ID is shown: w/c-P-% pozzolana. 

 

Table 5. Mix designs with various w/c ratios and pozzolana content. 

ID. Cement (kg) Pozzolana (kg) Water (kg) Sand (kg) Stone (kg) Plasticizing additive (l) 

0.40-P-0 380 0 152 982.8 910.6 6.46 

0.45-P-0 360 0 162 978.7 906.8 5.76 

0.50-P-0 320 0 160 1019.4 907.4 5.12 

0.55-P-0 300 0 165 1021.8 909.5 4.80 

0.40-P-10 342 38 152 980.2 908.1 6.46 

0.45-P-10 324 36 162 976.2 904.5 5.76 

0.50-P-10 288 32 160 1017.1 905.4 5.12 

0.55-P-10 270 30 165 1019.7 907.6 4.80 

0.40-P-15 323 57 152 978.8 906.9 6.46 

0.45-P-15 306 54 162 974.9 903.3 5.76 

0.50-P-15 272 48 160 1016.0 904.4 5.12 

0.55-P-15 255 45 165 1018.7 906.7 4.80 

0.40-P-20 304 76 152 977.5 905.7 6.46 

0.45-P-20 288 72 162 973.7 902.2 5.76 

0.50-P-20 256 64 160 1014.9 903.3 5.12 

0.55-P-20 240 60 165 1017.6 905.8 4.80 

 
2.3. Methodology 

 

2.3.1. Methods of testing of concrete 

 

The present research is an experimental investigation. Table 6 summarizes the main tests performed on the different sam-

ples of concrete with pozzolana. 

Table 6. Laboratory tests on pozzolana concrete. 

Method Norm Dimensions of samples Indicator n 

Compressive strength ASTM C39 10x20 cm kg/cm2 64 cylinders 

Capillary absorption ASTM 1585 10x3 cm  kg/m2*s 0.5 128 discs  

Mix design ACI-211.1 10x20 cm Weights 16 designs 

Wet curing 
ASTM C-31 

10x20 cm 

10x3 cm 

Age (days) 192 samples 
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Figure 1. Concrete samples with pozzolana addition. 

2.4. Methods for data analysis and modeling 

 

2.4.1. Linear multiple regression analysis 

 

Minitab software was used to estimate the multiple linear regression analysis (MLR) equation and predict the compressive 

strength and capillary absorption of concrete with pozzolana addition. The multiple regression equation was obtained by 

defining the relationship between the independent variables of the mix dosage and the single dependence variance or condi-

tion. 

 

2.4.2. Artificial neural networks 

 

The independent variables of the concrete include cement, addition, water, sand, stone, plasticizing additive, the water/ce-

ment ratio, pozzolana and age in days. To model the neural network to estimate compressive strength, a matrix P with 9 rows 

and 64 columns was formed. The resistance values of the samples, measured in the laboratory, form the matrix T with one 

row and 64 columns. While for capillary absorption a P matrix is formed with 9 rows and 128 columns. The capillary absorp-

tion values of the test tubes, measured in the laboratory, form the T matrix with one row and 128 columns. For practical 

reasons in the use of programs, the databases for both the compression resistance study and the capillary absorption study are 

denoted with the same symbols: P and T. 

 

2.4.2.1. Database preparation for neural networks 
 

First, the rows of P and T must be transformed into rows with zero mean and standard deviation 1. This is achieved with 

the following MATLAB2018a function:  

 

[pn, Est1] =  𝑚𝑎𝑝𝑠𝑡𝑑(𝑃) and  [tn, Est2] =  𝑚𝑎𝑝𝑠𝑡𝑑(𝑇) (1) 

 

Where pn and tn are the normalized matrices of P and T respectively, Est1and Est2 are automatically created structures 

containing, among other things, the values of the means and standard deviations. Secondly, highly correlated variables must 

be reduced, this is obtained with the MATLAB function, which follows: 

 

[ptrans, Est3] =  𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑝𝑐𝑎(pn, 0.001) (2) 
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Where pn is the normalized P matrix and p trans is the matrix where the rows of pn have been transformed and reduced to 

a smaller number, using principal component analysis, which by making use of the eigenvalues and eigenvectors of the co-

variance matrix of pn, constructs a matrix M that when multiplied to pn converts it into p trans. Est3 is a structure containing, 

among other things, the M matrix, and its inverse. 

 

2.4.2.2. Structuring of back propagation neural networks (BPNN) 

 

The problem is to obtain a mathematical model that, knowing the values of the manufacturing variables, provides an ap-

proximate value of the compressive strength and capillary absorption. Consequently, supervised neural networks will be used. 

For this kind of networks, the basic unit is the artificial neuron, which comprises a variable b that is the bias, a matrix 𝑤 =
[𝑤1, 𝑤2, … … , 𝑤𝑛]that are the weights of the neuron and an activation or transfer function 𝑓: ℜ → ℜ. 

 

The number of weights in w depends on the number of components of the data (input) which is a numerical matrix 𝑑 =
[𝑑1, 𝑑2, … , 𝑑𝑛]𝑇, which in this case are the values of the manufacturing variables of a test tube, which enters the artificial 

neuron. The response (output) of the neuron, for this data is: 

 

𝑞 = 𝑓(𝑤𝑑 + 𝑏), where: 𝑤𝑝 = 𝑤1𝑑1 + 𝑤2𝑑2 + ⋯ … + 𝑤𝑛𝑑𝑛 (3) 
 

In this measure a neuron is a real function of (n+1) variables. A layer of neurons is a vector transformation with vector 

variable. Neural networks are concatenations of layers of neurons, that is a composition of vector functions. The last layer, in 

this case, is a function with real values and vector variable. The following MATLABR2018a function was used to structure 

the neural networks: 

 

𝑛𝑒𝑡 = 𝑛𝑒𝑤𝑓𝑓(𝑟𝑎𝑛𝑔𝑜, [𝑐1, 𝑐2, 𝑐3, 𝑐4, . . ], { ′𝑓(𝑠)′, ′𝑓(𝑠)′, ′𝑓(𝑠)′, … , ′𝑔(𝑠)′ } , ′𝑡𝑟𝑎𝑖𝑛𝑙𝑚′) (4) 

 

Where the rank matrix contains the minima and maxima of the rows of the “p trans” matrix. In the matrix [𝑐1, 𝑐2, 𝑐3, 𝑐4, . . ]. 

c1 is an integer indicating the number of neurons in the first layer, c2 the number of neurons in the second layer and so on. 

Correspondingly, the transfer functions are chosen, which in this case are: 

 

𝑓(𝑠) = tanh(𝑠) =
exp(𝑠) − exp(−𝑠)

exp(𝑠) + exp(−𝑠)
   

(5) 

  

𝑔(𝑠) = 𝑠 (6) 

  

With the function f(s)=tanh(s) biunivocal transforms the values of s to values within the open interval < -1 , 1> .This 

improves the numerical approximations of the functions and their partial derivatives, during their training. 

 

The following expression: “trainlm” corresponds to the algorithm for minimizing the root mean square error function 

between the values of capillary absorption T measured in the laboratory and the values provided by the re network. The 

algorithm is based on the papers by Levenberg (1944) and Marquardt (1963). 

 
2.4.2.3. Preparation of the database for BPNN training 

 

The training of the network is carried out in three phases: Training, Validation and Testing. MATLAB (R2018a; 64-bit-

(win64)), has the following function to divide columns: [trainInd, valInd, testInd] = divideint(N, a, b, c)  where the ratios: a, 

b, c are positive numbers and with sum equal to 1. The choice of these is up to the user. This function divides the numbers 

ranging from 1 to N into three disjoint sets interleaved. In the case 0.50, 0.25, 0.25; for validation it takes the numbers in class 

[2], for testing, those in class [3] and for training, those in classes [1] and [4]. 

 

https://doi.org/10.7764/RDLC.23.3.568
http://www.revistadelaconstruccion.uc.cl/


Revista de la Construcción 2024, 23(3) 568-586 
575 of 586 

 

 
 

 
 

Revista de la Construcción 2024, 23(3) 568-586; https://doi.org/10.7764/RDLC.23.3.568                                                  www.revistadelaconstruccion.uc.cl  
                                                                                                                                                                                                                           Pontificia Universidad Católica de Chile  

 

In the case of compressive strength, three groups of the columns of the matrices P and T are taken using the equivalence 

classes modulo 4, restricted to the set of integers {1, 2, ..., 64}. These classes are: [2] ={2, 6,...,62}; [4]={4,8,...,64},[1,3]={1, 

5,...,61, 3, 4,...,61}. As the columns of P and T are numbered from 1 to 64, the columns used in the three phases are extracted 

with these classes; for training they are extracted with classes [1, 3], for validation with class [4] and for test with class [2], 

with 32, 16 and 16 columns respectively. 

 

Whereas, in capillary absorption, three groups of the columns of the matrices P and T are taken using the equivalence 

classes module 4, restricted to the set of integers {1, 2, ..., 128}. These classes are: [2] ={2, 6,...,32}; [4]={4,8,...,32},[1,3]={1, 

5,...,125, 3, 7,...,127}. As the columns of P and T are numbered from 1 to 128, the columns used in the three phases are 

extracted with these classes; for training they are extracted with classes [1, 3], for validation with class [4] and for test with 

class [2], with 64, 32 and 32 columns respectively. So, the choice of the classes is arbitrary, what must be considered is that 

approximately 50% of the columns must be used in the training, 25% in the validation and 25% in the Test as suggested by 

MATLAB. These choices can also be made randomly but avoiding the duplicity of the columns for each of the three phases 

and repeating the process hundreds or thousands of times, to achieve a good training of the neural network. 

 

2.4.2.4. Training of BPNN 

 

The function for training each of BPNN is as follows: 

 

[𝑛𝑒𝑡, 𝐸𝑠𝑡4] = 𝑡𝑟𝑎𝑖𝑛(𝑛𝑒𝑡, 𝐸𝑛𝑝, 𝑉𝑒𝑡, [ ], [ ], 𝑣𝑎𝑙, 𝑡𝑒𝑠𝑡) (7) 

 

Where net is the network created with equation (4). For compressive strength: Enp, VEt are 32-column matrices of ptrans 

and tn respectively, chosen with the class [1,3]. In addition, "val" are 16-column matrices of "ptrans" and "tn", chosen with 

equivalence classes [2]. tests are 16-column matrices of ptrans and tn, chosen with equivalence classes [4].  

 

For capillary absorption. Enp, VEt are 64-column matrices of ptrans and tn respectively, chosen with class [1,3]. val are 

32-column matrices of ptrans and tn, chosen with equivalence classes [2], test are 32-column matrices of ptrans and tn, chosen 

with equivalence classes [4]. 

 

3. Experimental results and analysis 

 

3.1. Compressive strength  

 

Table 7 shows the compressive strength corresponding to the average of 4 values obtained in the test cylinders for each 

water/cement ratio and percentage of pozzolana at 28 days.  According to Table 7, the higher the water/cement ratio the lower 

the compressive strength. These results are like those obtained by Medeiros-Junior et al. (2019). 

 

Table   7.  Compressive strength at 28 days of curing kg/cm2. 

ID 0.40 0.45 0.50 0.55 

Control resistances 633 562 502 451 

Resistances 10% pozzolana 714 629 561 501 

Resistance 15% pozzolana 745 651 573 508 

Resistance 20% pozzolana 697 627 555 502 

% Resistance Variation  18% 16% 14% 13% 

 

It is observed that for the same w/c ratio and pozzolana contents up to 15%, compressive strengths increased up to 18%; 

this could be attributed to the higher pozzolanic reaction due to the reaction of the amorphous silica (SiO2) present in the NP 

with the Ca(OH)2 produced by the hydration of Portland cement to give additional C-S-H formation, thus giving higher 

strength of the blended cement mortars (McCarthy and Dyer, 2019). 
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However, for mixes with 20% pozzolana, lower strengths were obtained with respect to mixes with 10 and 15% Pozzolana, 

for all w/c evaluated. The highest and lowest increase in strength was found for w/c = 0.40 and 0.55, respectively. In general, 

it was observed that the addition of up to 15% pozzolana produced increases in compressive strength in all the cases studied. 

 

 
Figure 2. Compressive strength at 28 days of curing. 

 

Pozzolanic mineral additions have high fineness, which generates increases in the compressive strength of concrete 

(Taşdemir, 2003). However, Deboucha et al. (2015) found that the compressive strength decreases by increasing the amount 

of natural pozzolanas (NP) and blast furnace slag (BFS) in replacement of cement at ages of 7, 28 and 90 days.  

 

Also, Hammat et al. (2021) asserts that increasing the pozzolana content delays the compressive strength at ages up to 28 

days, because the pozzolanic reaction is slow, but a beneficial effect on the compressive strength could be observed at later 

ages. In this investigation, at 28 days, increases in strength were observed with 10 and 15% pozzolana content, while for 20% 

pozzolana content, strength decreased. 

 

3.2. Capillary absorption rate results  

 

Table 8 shows that at higher w/c values, ages 28 and 56 days, the capillary absorption rate increases, and that for the same 

w/c ratio, age 28 days, with 0, 10% and 15% pozzolana, the absorption rate decreases. However, for pozzolana contents of 

20%, an increase in the absorption rate is observed with respect to mixtures with 10 and 15% pozzolana; according to the 

study of López and Castro (2010), the higher the pozzolana content, the higher the capillary absorption rate. 

 
Table 8. Capillary absorption rates kg/m2*s 0.5 of concrete at ages of 28 and 56 days. 

ID Age (days) 0.40 0.45 0.5 0.55 

Control samples  

28 

0.0100950 0.0132750 0.0145500 0.0153250 

10% pozzolana 0.0071800 0.0096050 0.0115250 0.0119750 

15% pozzolana 0.0044325 0.0065600 0.0075150 0.0085475 

20% pozzolana 0.0053267 0.0080567 0.0100175 0.0114500 

Control samples  

56 

0.006255 0.007695 0.010203 0.011350 

10% pozzolana 0.004340 0.005250 0.006048 0.006723 

15% pozzolana 0.003838 0.004698 0.005305 0.005713 

20% pozzolana 0.002925 0.003913 0.004838 0.005553 

 

The results obtained at 56 days denoted a decrease in capillary absorption in mixtures with up to 20% pozzolana: according 

to H. Yanguatin et.al (2017). This behavior can be associated with a more vigorous pozzolanic activity at late curing ages.  
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Finally, according to Taşdemir (2003) micro filler materials with fine particles fill both interfaces and bulk paste, and the 

absorptivity coefficient of concrete decreases. 

 

Medeiros et al (2019) showed that concretes with higher pozzolana content presented higher capillary sorption for wa-

ter/cement ratios lower than 0.60. This behavior is attributed to the reduction of pore diameters and densification of the mi-

crostructure that caused much higher surface tension forces. 

 

 

Figure 2. Capillary absorption at 28 days of curing vs water/cement ratio. 

 

 
 

Figure 3. Capillary absorption at 56 days of curing vs water/cement ratio. 
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3.3. Multiple linear regression analysis 

 

3.3.1. Linear multiple regression analysis applied to the compressive strength 

 

Equation (1) was obtained from 64 experimental data of compressive strength, six key independent variables were consid-

ered: cement, pozzolana, water, sand, stone and additive, and the MLR method was applied; as can be seen in the equation, 

the dependent variable (f'c) is a function of the independent variables with their respective equivalent coefficients. 

 

f’c= 469370 -146.8 cement (kg)-168.3 pozzolana (kg)- 554 water (kg)- 198 sand (kg)- 134.7 stone (kg)- 1723 plasticizer (l) (1) 

 

Table 9. Summary of the model. 

S R-sq. R2 (adjusted) R-sq. (pred) 

21.9905 93.91% 93.27% 92.41% 

 

3.3.2. Linear multiple regression analysis applied to capillary absorption rate. 

 

The capillary absorption rate values shown in Table 11 were used; seven key independent variables were considered: 

cement, pozzolana, Water, sand, stone, additive and age; and the MLR method was applied; as shown in equation (9), the 

dependent variable (S) is a function of the independent variables with their respective equivalent coefficients. 

 

S = -1.19-0.00012 cement (kg)-0.00031 pozzolana (kg)+0.0115 water (kg)+0.00332 sand (kg)-0.00538 stone (kg)+0.176 plasti-

cizer (l) - 0.000135 age (days) 
(8) 

  
Table 10. Summary of the model. 

S R2 R2 (adjusted) R2 (pred) 

0.0012301 87.09% 86.32% 85.23% 

 

3.4. Analysis of BPNN 

 

3.4.1. Neural networks applied to the compressive strength 

 

The variables statistics shown in Table 11 contains the minimum, maximum, mean, mode, standard deviation (Std) and 

Pearson CCR correlation of the manufacturing variables (occupying the first 9 rows) with resistance. The highest correlations, 

in absolute value, correspond to variables V6, V7 (92%) and to variables V3 and V4. The lowest correlations occur with 

variables V5 and V8. The last CCR column of Table 11, are the values of the correlation of the variables with resistance. The 

NaN value is indeterminate because the variable V9 or age is constant (28 days). 

 

Table 11. Statistics and correlation of manufacturing variables with compressive strength. 

Variables Number Min Max Mean Mode Std dev. CCR 

Cement (kg) V1 240.00 380.00 301.75 288.00 38.99 0.48 

Addition (kg) V2 0.00 76.00 38.25 0.00 26.34 0.43 

Water (kg) V3 152.00 165.00 159.75 152.00 4.97 -0.81 

Sand (kg) V4 973.70 1021.80 998.00 973.70 20.96 -0.83 

Stone (kg) V5 902.20 910.60 906.14 903.30 2.28 -0.16 

Plasticizer (kg) V6 4.80 6.46 5.53 4.80 0.66 0.92 

w/c V7 0.40 0.55 0.48 0.40 0.06 -0.92 

Pozzolan content (%) V8 0.00 20.00 11.25 0.00 7.64 0.30 

Age (days) V9 28 28 28 28 0 NaN 

Compressive strength 

(kg/cm2) 
V10 450.77 744.93 86.30 588.17 450.77 1 

 

Six BPNNs were trained, the structures of which are shown in Table 12, the first three networks respecting the recommen-

dations of various authors, who suggest that the number of neurons in the first layer should coincide with the number of 
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variables entered, which in this case was 3, because p trans in a 3 x 64 matrix. Each of the 6 BPNNs delivered in a Re matrix 

the approximate values of the compressive strengths of the 64 specimens. The correlation between Re and T for each structure 

is R; the BPNN that has the highest correlation R=0.9739, is the sixth one in Table 12 and we will denote it BPNN6. It is 

observed that this network does not comply with the recommended rule, since it has 15 neurons in its input layer. There is no 

proven mathematical justification for this recommendation, since these are statements based on statistics. 

Table 12. R, m, b, MSE and RMSE coefficients of BPNN with inputs P and T. 

Structure R m b MSE RMSE 

[3, 30, 30, 1] 0.959803 0.963407 23.086817 564.586304 23.761025 

[3,15, 5, 1] 0.934997 0.900894 62.447416 898.788867 29.979808 

[3, 20, 10,1] 0.932110 0.912549 39.985462 1058.077407 32.528102 

[10, 20, 1] 0.972080 0.927397 45.015686 391.053334 19.775068 

[10, 20, 10,1] 0.932240 0.806496 113.550275 943.413954 30.715044 

[15, 20, 10, 1] 0.973964 0.938322 40.142486 373.470266 19.325379 

 

In Table 13, the column of the class intervals of the error E=∣T-Re∣ are presented, as well as the absolute frequencies and 

the relative frequencies of E. 

 

Table 13. Error between grid response and laboratory measured compressive strengths. 

Structure Class intervals Absolute freq. Relative freq. 

[15, 20, 10, 1] [0.1289500 - 9.5425361> 23 0.3593750 
 [9.5425361 - 18.9561223>  21 0.3281250 
 [18.9561223 - 28.3697084> 13 0.2031250 
 [28.3697084 - 37.7832946> 3 0.0468750 
 [37.7832946 - 47.1968807] 4 0.0625000 

 

Table 14 shows the R values and the coefficients m, b of the linear regression lines for each phase and the total for BPNN6. 

The high accuracy and reliability of the predictive model with BPNN6 are consistent with the results of Divyah Nagarajan et 

al. (2020), who also obtained correlation coefficients of 0.94 for neural network models that predict compressive strength 

with 5 manufacturing variables: cement, coarse aggregate, fine aggregate, superplasticizer and the water ratio cement (w/c). 

While our BPNN6 structure with 10 manufacturing variables presents a higher R2 value of 0.97 compared to the network 

formulated by Divyah Nagarajan et al. (2020) and Deneme (2020). This corroborates the effectiveness of neural networks in 

capturing the complex relationships between manufacturing variables and concrete properties. The results of BPNN, with its 

high correlation and low error rates, align with our results obtained, further validating the superiority of neural networks in 

this domain over other methods such as GEP (Deneme, 2020) and the MLR that presents good approximation but still less 

reliable than ANNs. 

 

Table 14. Correlation R2 and the coefficients of the equation of the straight line. 

Structure Coefficients Training Validation Test Total 

[15, 20, 10, 1] R 0.9700034 0.9802277 0.9716686 0.9739636 

 m 0.9751695 0.9114266 0.8747787 0.9383216 

 b 18.9736498 53.6294435 83.3737255 40.1424862 

 

Table 15 shows the variables and designs for which the minimum and maximum strength of the concrete samples are given. 

It is observed that the minimization and maximization of the resistance are influenced by the variables: Addition, the w/c ratio 

and the pozzolana; with values: [0.00, 0.55, 0.00] and [57.00, 0.40, 15.00] respectively. The values of the other variables are 

similar. 
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Table 15. Minimum and maximum compressive strength variables and design. 

Variables Minim Max. 

Design 0.55/Puz0 0.40/Puz15 

Cement (kg) 300.00 323.00 

Addition (kg) 0.00 57.00 

Water (kg) 165.00 152.00 

Sand (kg) 1021.80 978.80 

Stone (kg) 909.50 906.90 

Plasticizer (kg) 4.80 6.46 

Water/cement 0.55 0.40 

Pozzolan content (%) 0.00 15.00 

Age(days) 28.00 28.00 

Compressive strength 448.38 758.14 

 

3.4.2. Neural networks applied to the capillary absorption of concrete 

 

This section presents the statistics of the variables. Table 1 contains the minimum, maximum, mean, mode, standard devi-

ation (std) and Pearson CCR correlation of the manufacturing variables (occupying the first 9 rows) with capillary absorption. 

The highest correlations, in absolute value, correspond to the variables V2 (-62%) and are followed by the variables V9 and 

V8 with (-0.58) and (-0.57) correlation respectively. The lowest correlations occur with variable V1 (0.04). 

Table 15. Statistics and correlation of manufacturing variables with capillary absorption. 

Variables Num-

ber 
Min Max Media Mode Std CCR 

Cement (kg) V1 240.00 380.00 301.75 288.00 37.90 0.04 

Addition (kg) V2 0.00 76.00 38.25 0.00 25.60 -0.62 

Water (kg) V3 152.00 165.00 159.75 152.00 4.83 0.41 

Sand (kg) V4 973.70 1021.80 998.00 973.70 20.38 0.44 

Stone (kg) V5 902.20 910.60 906.14 903.30 2.22 0.35 

Plasticizer Additive (L) V6 4.80 6.46 5.53 4.80 0.64 -0.46 

w/c V7 0.40 0.55 0.48 0.40 0.06 0.46 

Puzolana (%) V8 0.00 20.00 11.25 0.00 7.42 -0.57 

Age(days) V9 28.00 56.00 42.00 28.00 14.06 -0.58 

Capillary Absorption (kg/m²*s 0.5) V10 2.850E-03 1.640E-02 3.306E-03 7.821E-03 1.000E-02 1.00 

 

The last CCR column of Table 1 contains the values of the correlation of the variables with the capillary absorption, 

measured in kg/m2*s0.5. Results of the training of the 6 BPNN structures. 

Table 16.  Coefficients R, m, b, MSE and RMSE 

        Response: ANN with entrance P and T 

Structure R2 m b MSE RMSE 

[5, 30, 30, 1] 0.8747544 0.7816817 0.0018490 0.0000026 0.0015970 

[5,15, 5, 1] 0.9776479 0.9679636 0.0004086 0.0000005 0.0007086 

[5, 20, 10,1] 0.9873944 1.0031284 0.0000649 0.0000003 0.0005350 

[10, 20, 1] 0.9877384 0.9949809 0.0001632 0.0000003 0.0005307 

[10, 20, 10,1] 0.9818114 0.9742225 0.0002918 0.0000004 0.0006302 

[15, 20, 10, 1] 0.9854844 0.9991123 0.0001307 0.0000003 0.0005779 

 

Table 16 shows the 6 BPNN structures, with different structures, the first 3 respecting the recommendations of various 

authors, who suggest that the number of neurons in the first layer should coincide with the number of variables entered, which 

in this case is 5. After training the 6 networks, each of them delivered a Re matrix with the approximate values of the capillary 

absorption T, measured in the laboratory. The neural network with the highest correlation R2=0.9877, between Re and T, is 

the fourth in the list and is denoted BPNN4, which does not comply with the rule. This rule is not always fulfilled because 

there is no proven mathematical justification. 
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Table 17. Error between laboratory measured capillary absorption and BPNN4 response. 

Structure Class intervals Absolute freq. Relative freq. 

 [10, 20, 1] [ 0.00000679 - 0.00038704 > 91 0.71093750 
 [ 0.00038704 - 0.00076729 > 22 0.17187500 
 [ 0.00076729 - 0.00114754 > 7 0.05468750 
 [ 0.00114754 - 0.0015278 > 4 0.03125000 
 [ 0.00152780 -   0.00190805] 4 0.03125000 

 

Table 18 shows the error class intervals E=||T ̶ Re| and the absolute and relative frequencies. The capillary absorption 

measured in laboratory differs from the approximate value given by BPNN4, this difference E for 88.28% of the specimens 

is in the range [0.0000067892, 0.00076729] measured in (kg/m2*s0.5). 

 

Table 18. The correlation R and the coefficients of the equation of the line for the neural network ANN4 

[10, 20, 1] Coefficients Training Validation Test Total 

 R 0.9700034 0.9802277 0.9716686 0.9739636 

 m 0.9751695 0.9114266 0.8747787 0.9383216 

 b 18.9736498 53.6294435 83.3737255 40.1424862 

 

Table 19 shows the values of R and the coefficients m, b of the linear regression lines of each phase and of the total, for 

BPNN4. The value of R in each of the six BPNNs, of the total stage, coincides in 3 decimal places with the average of the R's 

for the three phases: training, validation and test. 

Table 19. Minimum and maximum capillary absorption variables and design. 

Variables Minimum capillary absorption Maximum capillary absorption 

Design 0.04/Puz20 0.55/Puz0 

Cement (kg) 304.00 300.00 

Addition (kg) 76 0.00 

Water (kg) 152.00 165.00 

Sand (kg) 977.5 1022.00 

Stone (kg) 905.7 906.50 

Plasticizer (kg) 6.46 4.80 

w/c 0.40 0.55 

Pozzolan content (%) 20.00 0.00 

Age(days) 56.00 28.00 

Capillary absorption 0.002850 0.016400 

 

Table 20 shows the variables and designs for which the minimum and maximum Capillary Absorption of the concrete 

samples are given. It is observed that the minimization and maximization of the Capillary Absorption are influenced by the 

variables: addition, water/cement ratio, pozzolana and age; with values: [76, 0.40, 20, 56] and [0.00, 0.55, 0.00,28] respec-

tively. The values of the other variables do not differ much. 

 
4. Application of BPNN and MLR models 

 

4.1. Compressive strength 

 

Applying the models derived from the multiple regression analysis (MLR) and the selected BPNN, the compressive 

strength values were calculated, as well as the average error between the experimental values and the values calculated with 

the mathematical models; where it is observed that for MLR the errors are between [7.83-34.48] kg/cm2 while for BPNN they 

are between [4.59-34.63] kg/cm2. The details are presented in Table 19. 
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Table 20. Results obtained from modeling using MLR and BPNN. 

Water/cement 
Pozzolana 

(%) 

f’c  

(kg/ cm2) 

MLR  

(kg/cm2)  Error MLR 
BPNN (kg/cm2) Error BPNN 

0.40 0 633 650 17.21 646 12.54 

0.40 10 714 688 26.14 690 23.38 

0.40 15 745 719 25.54 744 11.02 

0.40 20 697 731 34.48 695 6.96 

0.45 0 562 575 17.70 559 17.70 

0.45 10 629 609 20.60 650 20.88 

0.45 15 651 642 10.26 639 11.93 

0.45 20 627 642 15.80 632 6.74 

0.50 0 502 508 7.83 490 11.42 

0.50 10 561 547 13.86 595 34.63 

0.50 15 573 557 16.85 555 18.95 

0.50 20 555 580 24.64 584 28.61 

0.55 0 451 465 14.70 455 4.59 

0.55 10 501 494 8.27 492 9.62 

0.55 15 508 492 15.51 530 22.00 

0.55 20 502 510 7.72 515 13.06 

 

The graphical representation of the compressive strength results and the coefficients of determination (R2) of the BPNN 

and MLR models can be detailed in Figure 5. In addition, it is evident that both the RML and BPNN models can satisfactorily 

predict values like those obtained in the laboratory. 

 

 

Figure 4. Comparison of compressive strength prediction using BPNN and MLR models with experimental results. 

4.2. Capillary absorption rate 

 

Applying the formulas derived from the multiple regression analysis (MLR) and the selected BPNN; the capillary absorp-

tion values were calculated, as well as the average error between the experimental values and the values calculated with the 

mathematical models. It is observed that for MLR the errors are between [0.000133-0.00231] kg/m2*s0.5 while for ANN be-

tween [0.000087-0.001047] kg/m2*s0.5. The details are presented in Table 21. 
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Table 21. Capillary absorption errors at 28 days of curing, calculated with MLR and BPNN. 

Water/cement 
Pozzolana 

(%) 

Curing age 

(days) 

Experimental 

(kg/m2*s0.5) 

MLR 

(kg/m2*s0.5) 

BPNN  

(kg/m2*s0.5) 

Error MLR 

(kg/m2*s0.5) 

Error BPNN 

(kg/m2*s0.5) 

0.40 0 28 0.010095 0.010277 0.010271 0.000341 0.000340 

0.40 10 28 0.007180 0.008071 0.007344 0.000949 0.000202 

0.40 15 28 0.004433 0.006367 0.004580 0.001963 0.000213 

0.40 20 28 0.005327 0.004994 0.005384 0.000338 0.000100 

0.45 0 28 0.013275 0.012113 0.013118 0.001131 0.000166 

0.45 10 28 0.009605 0.009532 0.009960 0.000350 0.000360 

0.45 15 28 0.006560 0.008345 0.007082 0.001842 0.000522 

0.45 20 28 0.008057 0.006952 0.008401 0.001125 0.000308 

0.50 0 28 0.014550 0.013520 0.014892 0.001024 0.000477 

0.50 10 28 0.011525 0.010728 0.011380 0.000800 0.000521 

0.50 15 28 0.007515 0.009499 0.007573 0.002008 0.000117 

0.50 20 28 0.010018 0.008807 0.010524 0.001166 0.000506 

0.55 0 28 0.015325 0.014211 0.015789 0.001137 0.000624 

0.55 10 28 0.011975 0.011915 0.012073 0.000216 0.000175 

0.55 15 28 0.008548 0.010664 0.008710 0.002170 0.000389 

0.55 20 28 0.011450 0.009082 0.010541 0.002331 0.001047 

0.40 0 56 0.006255 0.006459 0.000365 0.006617 0.000443 

0.40 10 56 0.004340 0.004317 0.000175 0.004470 0.000175 

0.40 15 56 0.003838 0.002583 0.001254 0.003670 0.000172 

0.40 20 56 0.002925 0.001247 0.001678 0.003029 0.000104 

0.45 0 56 0.007695 0.008331 0.000801 0.008374 0.000679 

0.45 10 56 0.005250 0.005793 0.000543 0.005321 0.000175 

0.45 15 56 0.004698 0.004590 0.000133 0.004727 0.000113 

0.45 20 56 0.003913 0.003255 0.000658 0.003930 0.000132 

0.50 0 56 0.010203 0.009713 0.000648 0.010915 0.000918 

0.50 10 56 0.006048 0.006912 0.000865 0.006007 0.000368 

0.50 15 56 0.005305 0.005711 0.000420 0.005429 0.000360 

0.50 20 56 0.004838 0.005039 0.000367 0.004687 0.000272 

0.55 0 56 0.011350 0.010375 0.001112 0.011095 0.000401 

0.55 10 56 0.006723 0.008106 0.001383 0.006777 0.000403 

0.55 15 56 0.005713 0.006905 0.001193 0.005673 0.000087 

0.55 20 56 0.005553 0.005307 0.000329 0.005908 0.000441 

 

In addition, the graphical distribution of the capillary absorption results and the coefficients of determination (R2) of the 

BPNN and MLR models can be seen in Figure 6, which shows a greater similarity between the values obtained in the labor-

atory using the BPNN model and the MLR model. 
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Furthermore, Figure 6 represents the comparison between the values obtained from laboratory (S) and the capillary ab-

sorption results and the values obtained through the BPNN and MLR models.  In addition, the determination coefficients (R2) 

of each regression method are presented. Where the BPNN models show a lower standard deviation and a greater similarity 

between the values obtained in the laboratory with an R2 value of 0.9756, while using MLR, values were obtained with a 

greater deviation than the BPNN due to the limitations that the model presents. However, the MLR obtained an acceptable R2 

value of 0.8693, indicating the possible tendency of capillarity to this regression method. 

 

Figure 5. Comparison of capillary absorption prediction using BPNN and MLR models with experimental results. 

 

5. Conclusions and comments 

 

1. It is feasible to predict the capillary absorption and compressive strength of concrete with pozzolana addition, apply-

ing the techniques of multiple linear regression (MLR) and back propagation artificial neural networks (BPNN) 

obtaining high determination coefficients in both models.   

2. The determination of these prediction models facilitates obtaining results prior to carrying out tests with great relia-

bility, reducing times, since they normally require laboratory tests, which implies test trials and waiting times. Fur-

thermore, in contribution to the sustainability of concrete by designing more durable and resistant concrete with an 

optimal dosage in the use of resources. 

3. The BPNN demonstrates better model prediction and approximation with a better coefficient of determination (R2) 

with respect to MLR in both compressive strength and capillary absorption modeling. 

4. The optimal addition of pozzolana was 15% to replace cement due to its excellent performance in terms of compres-

sion resistance and low capillary absorption. 
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